Lighting: Hygienic Approaches

Department of hygiene, ecology basics and life safety Altai State Medical University

What is light?

- Light is just one portion of the various electromagnetic waves flying through space.
- The electromagnetic spectrum covers an extremely broad range, from radio waves with wavelengths of a meter or more, down to x-rays with wavelengths of less than a billionth of a meter. Optical radiation lies between radio waves and x-rays on the spectrum, exhibiting a unique mix of ray, wave, and quantum properties.

What is light?

Perception of light by eyes: anatomy

- Light perceived by special cells: cones and rods
- Cones and rods located at retina

Perception of light by eyes: histology

- Cones and rods are photoreceptor neuroepithelial cells

Perception of light by eyes: biochemistry

- Photoreceptor cells contain a chromophore (11-cis retinal, the aldehyde of Vitamin A1 and light-absorbing portion) bound to cell membrane protein, opsin.
- Light perception starts from light photon interaction with the retinal in a photoreceptor cell. The retinal undergoes isomerisation, changing from the 11-cis to all-trans configuration. That causes conformational change of opsin and undergoing change of membrane potential.

Light has a triple effect

- Light for visual functions
- Illumination of task area in conformity with relevant standards
- Glare-free and convenient
- Light for emotional perception
- Lighting enhancing architecture
- Creating scenes and effects
- Light creating biological effects
- Supporting people's circadian rhythm
- Stimulating or relaxing

Basic parameters used in lighting

- Luminous flux (Lumen, Im) (Сила света)
- Luminous intensity (Candela, cd) (Интенсивность света)
- Illuminance (Lux, Ix) (Освещенность)
- Luminance (cd/m²) (Яркость)

Luminous flux

- The luminous flux describes the quantity of light emitted by a light source.
- The luminous efficiency is the ratio of the luminous flux to the electrical power consumed (Im / W). It is a measure of a light source's economic efficiency.
- Units: Lumen

Luminous flux Φ

Lumen [Im]

Luminous intensity

- The luminous intensity describes the quantity of light that is radiated in a particular direction. This is a useful measurement for directive lighting elements such as reflectors.
- Units: Candela

Luminous intensity I

Candela [lm/sr]=[cd]

Illuminance

- Illuminance describes the quantity of luminous flux falling on a surface. Relevant standards specify the required illuminance.
- Units: Lux

Illuminance: $\mathrm{E}(\mid \mathrm{x})=\frac{\text { luminous flux }(\mathrm{Im})}{\text { area }\left(\mathrm{m}^{2}\right)}$

Illuminance E

$\operatorname{Lux}\left[\mathrm{Im} / \mathrm{m}^{2}\right]=[\mathrm{Ix}]$

Luminance

- Luminance is the only basic lighting parameter that is perceived by the eye.
- It describes on the one hand a light source's impression of brightness, and on the other, a surface and therefore depends to a large extent on the degree of reflection (colour and surface).
- Units: $\mathrm{cd} / \mathrm{m}^{2}$

Luminance L

$\left[1 \mathrm{~m} / \mathrm{sr}^{*} \mathrm{~m}^{2}\right]=\left[\mathrm{cd} / \mathrm{m}^{2}\right]$

Quality criteria of lightning

- Sufficient illumination level
- Harmonious brightness distribution
- Glare limitation
- Avoidance of reflections
- Good modelling
- Correct light colour
- Appropriate colour rendering
- Changing lighting situations
- Personal control
- Energy efficiency
- Daylight integration
- Light as an interior design element

Direct glare

Glare limitation for direct glare

- Cause
- Luminaires without glare control
- Very bright surfaces
- Effect
- Loss of concentration
- More frequent mistakes
- Fatigue
- Remedy
- Luminaires with limited luminance levels
- Blinds on windows

Reflected glare

Glare limitation for reflected glare

- Cause
- Reflective surfaces
- Incorrect luminaire arrangement
- Incorrect workstation position
- Effect
- Loss of concentration
- More frequent mistakes
- Fatigue
- Remedy
- Matching luminaire to workstation (layout)
- Indirect lighting
- Matt surfaces

Light colour

- Light colour measured in Kelvins (K)
- The light colour describes the colour appearance of the light.

	Colour temperature	Appearance	Association
Warm white	up to 3300 K	reddish	warm
Intermediate white	$3300-5300 \mathrm{~K}$	white	neutral
Cool white	from 5300 K	bluish	cool

Measuring illuminance

- Measurement tool called Luxmeter

Types of lighting

- Direct lighting
- Indirect lighting
- Indirect/direct lighting

Direct lighting

- Light falls from the luminaires on the ceiling directly onto the workplace, in part highly directional
- Glare suppression is important under flat angles
- The ceiling can appear dark (cave effect)
- The workplace layout should not allow any shadows
- High energy efficiency is achieved for the work area

Indirect lighting

- Light is directed to the ceiling and walls so that it illuminates the workplaces indirectly
- The lighting effect may appear diffuse through the absence of shadows
- The room increases in height
- The light is glare-free
- Workplaces can be arranged at random
- Lower energy efficiency

Indirect/direct lighting

- Light is directed to the workplace directly and indirectly via the ceiling from suspended luminaires or free-standing luminaires
- Pleasant room visuals
- High user acceptance
- Good contrast ratios
- Flexible workplace layout with an indirect share of > 60%
- Good combination of energy efficiency and lighting quality

Standard values for lighting of workplaces

- Illuminance levels must not fall below the maintenance values in the visual task area.
- If the precise location is not known, the limit should be applied to the whole room or a specific working area.
- Maintenance levels:
- School and university classes: 300 lx
- Pediatrics medical room: 500 lx
- Operating room: 500 lx
- X-rays diagnostic rooms: 400 Ix

Application areas of lighting

Light for Offices and Communication

Application areas of lighting

Light for Offices and Communication

- Working and feeling at ease
- Making work easier: Complying with standards (adjusting illuminance levels to tasks). Avoiding glare by light
- Creating an identity: Lighting design in the overall architectural context
- Promoting health: Adjusting biologically effective light to the circadian day/night rhythm. Daylight as preferred source of light
- Employees as a cost factor: Staff cost analysis in comparison with investment and operating costs. Result: lighting solutions must be subject to people's demands. Light enhances people's performance and creativity.

Application areas of lighting

Light for Offices and Communication

- Technology and flexibility
- Creating different zones: Structuring and orientation in space through lighting design for vertical surfaces, transit areas, pools of light etc. Arranging groups using lighting management
- Bolstering activity: Adjustment through lighting management. Taking into account changing work media (such as tablets): no high luminance levels at steep angles
- Preserving individuality: Keeping demographic trends in mind. Lighting management for individual control options
- Being flexible: Glare limitation at all angles for flexible utilisation of space

Application areas of lighting

Light for Education and Science

Application areas of lighting

Light for Education and Science

- Environmental aspects
- Use of daylight: Energy efficiency through lighting management
- Efficient luminaires and intelligent control: LED solutions are highly efficient. Frequent dimming and switching does not affect the LEDs' service life
- Ergonomic compatibility
- Performance and concentration: Standards cover basic visual requirements such as glare or illuminance. Emotional components enhance concentration. Open room ambience thanks to brightening up of ceiling and walls

Application areas of lighting

Light for Education and Science

- Ergonomic compatibility
- Feeling at ease and health: Feeling at ease enhances people's performance. Light stabilises the inner biological clock, measurably stimulates hormonal processes. Medical evidence shows that light enhances cognitive performance
- Adjusting light to activities and visual tasks: Blackboard lighting: high visual demands because of accommodation required from the eye for close and distant vision when reading and copying from the blackboard

Application areas of lighting

Light for Health and Care

Application areas of lighting

Light for Health and Care

- Health and activity
- Quality for patients and persons in need of care: Taking into account dementia patients. Avoiding mirror effects and reflections (delusions)
- Feeling at ease and supporting the inner clock: In many healthcare facilities, no daylight - an important means of stabilising the inner clock - is available. Little time is spent outdoors. Compensation by artificial lighting: well-adjusted changes in light colours and illuminance levels. High intensity in pools of light

Application areas of lighting

Light for Health and Care

- Reliability and functionality
- Visual comfort and security for patients and residents: Emergency lighting. Providing orientation. Avoiding heavy shadows and dark zones. Pleasant corridor design using indirect light components on ceiling and walls
- Supporting diagnosis and treatment: Increase in illuminance levels: at the press of a button at the patient's bedside or via additional light components. High colour rendering index
- Optimising doctors' and nurses' working conditions: Individual settings, intuitive operation. Where people work at night: support the circadian rhythm with biologically effective lighting

Light production

- Light can be produced in a large number of different ways - naturally or artificially.
- Light is produced cost-effectively by using four main groups of light sources:
- Thermal light sources
- Low-intensity discharge lamps
- High-intensity discharge lamps
- Semiconductor light sources

Light production

Thanks for attention!

